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just the identity transformation; the generalized co-
variant Dirac position operator is just the canonical 
coordinate x=q. So the generalized inverse Foldy-
Wouthuysen transformation leaves the Hamiltonian in 
the canonical form (4.1) for zero spin. But considerably 
more manipulation is needed to get the Klein-Gordon 
equation.8 

The equations (5.6) can be put directly into the 
Schrodinger equation form (5.4) with a six-component 
wave function whose components are A and w-1E.8'n'21 

The Hamiltonian for this equation is not Hermitian 
but is pseudo-Hermitian in the appropriate indefinite 
metric.13 From our point of view, the Schrodinger equa
tion with the Hamiltonian (5.3), which is obtained by 
the generalized inverse Foldy-Wouthuysen transforma
tion from the canonical Hamiltonian (4.1), is more 
nearly the spin 1 analog of the Dirac equation. Whether 
it will be more useful remains to be seen. 

Various authors have developed the transformation 
which connects the canonical Hamiltonian (4.1) directly 
to the Schrodinger equation form of Eqs. (5.6) with the 

12 E. M. Corson Tensors, Spinors, and Relativistic Wave Equa
tions (Hafner Publishing Company, New York, 1953), especially 
Sees. 26(b) and 39(d) (i). 

13 K. M. Case, Phys. Rev. 95, 1323 (1954). 

1. INTRODUCTION 

THE problem of replacing the quantum-mechanical 
Born (or perturbation) series by a more con

vergent expansion is already a well-studied one. Its 
importance arises from the fact that many cases of 
great physical interest cannot be treated by means of 
that series. Bound-state and resonace problems fall in 
this category whenever the unperturbed problem yields 
only a continuum of noninteracting states. This is 
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wave function whose components are A and w~E.8-13 

This is not a unitary transformation but is pseudo-
unitary in the appropriate indefinite metric.13 From our 
point of view, it appears as the combination of the 
generalized inverse Foldy-Wouthuysen transformation 
and the manipulations (5.5). This transformation does 
not have all of the properties of the Foldy-Wouthuysen 
transformation and cannot be put to all of the same 
uses. For example, if we use it to transform the position 
operators x which appear as the independent variables 
in the equations (5.6) to the representation in which 
the Hamiltonian has the canonical form (4.1), we get 
an operator14 which does not satisfy the last of Eqs. (B), 
the condition for Lorentz covariance. 

Finally, we want to point out that we have exposed 
several simple features of the spin 1/2 situation which 
are not shared by spin 0 or 1. In particular, the inverse 
Foldy-Wouthuysen transformation for s = 1/2 gives us 
the local invariant Dirac equation. The analogous 
equations for s = 0 and 1 are not local. 
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14 K. M. Case, Ref. 13, Eq. (38). 

precisely the situation one must face in relativistic field 
theory. The current experimental results with strongly 
interacting particles only emphasize the need for im
proved calculational procedures in this area. 

Among the many existing approaches1-3 to the ques-
1 See, for example, P. M. Morse and H. Feshbach, Methods of 

Theoretical Physics (McGraw-Hill Book Company, Inc., New 
York, 1953), Part II, Chap. 9. 

2 For recent approaches see M. Rotenberg, Ann. Phys. (N. Y.) 
21, 579 (1963), and its bibliography. Rotenberg's method, like the 
present one, is based on a regrouping of the Born terms, designed 
to accelerate convergence. His "regrouped" Eq. (59), in particular, 
should be compared with our formulation, in which a true re
grouping only occurs as an intermediate step. 

3 A method of circumventing the convergence difficulty of 
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tion, some, like the Fredholm or Feenberg methods,1 

while successful in potential problems, have not so far 
been readily applicable to relativistic field theory. In 
the latter context we should only like to mention the 
renormalization group method4 as possibly having some 
relation to the ideas suggested here. As far as could be 
ascertained, however, neither that method nor (in 
general) its results coincide with ours. Nevertheless, 
a common starting point is the recognition that a re-
normalization constant (or a coupling constant) may 
be specified in a continuously infinite number of ways 
by stating the numerical value of some Green function 
at a chosen point in momentum space (the "^normal
ization momentum"). 

The present article, which is only intended as an 
exposition of the method, will be confined to potential 
scattering for definiteness of presentation. It will be 
readily apparent, nevertheless, that the arguments are 
of wider generality. 

2. THE BORN SERIES 

Since the method to be presented makes use of the 
standard Born series as a starting point, we briefly 
review this expansion to establish a notation. 

Consider an integral equation of the type 

G(s) = G0(s)+g(KG)(s), (2.1) 

where G(s) is a single unknown function of a finite set, 
s, of continuous variables sh s2, • • •, and where K is a 
given linear operator which maps G into some other 
function KG. The function GQ(S) is also given; the real 
parameter g is adjustable. For the purpose of avoiding 
undue generality one may think of gK as being the 
integral operator associated with a certain Schrodinger 
equation and incorporating certain boundary condi
tions; G is Green's function for the problem. The 
variables s might be positions, momenta, etc., according 
to the representation chosen. For example, let 

ii/ '+(2w)-1VV-^F^=0 (2.2) 

be the Schrodinger equation considered. Let 

V (r)= (2TT)-3 [dtp e'f'Wto). (2.3) 

Then, the retarded Green function, suitably defined in 

bound states and resonances has been suggested by S. Weinberg, 
Phys. Rev. 130, 776; 131, 440 (1963). He attempts to replace the 
problem by a physically equivalent one where each resonance and 
bound state is already made to occur in the unperturbed problem 
as a "particle" in its own right. 

4 N. N. Bogoliubov and D. V. Shirkov, Introduction to the 
Theory of Quantized Fields (Interscience Publishers, Inc., New 
York, 1959), Chap. VIII. 

energy-momentum space, satisfies the integral equation 

G(q,p,E)= - (2*)»«(p-q)+g(2ir)-* 

< / • X / <Pk[_E- (2»)~1A»+*e]-1 

XW(q-k)G(k,p,E). (2.4) 

This provides a detailed instance of (2.1). 
The Born series for G consists of the Taylor expansion 

G=Eg"Gn. (2.5) 

Whether or not this series converges, it may be used to 
define the sequence of functions Gn. We have, in fact, 

Gn=K*G0. 

3. MODIFIED BORN SERIES 

(2.6) 

In order to find an expansion for G with optimized 
convergence properties we now proceed in two steps. 
First, we merely replace one Taylor expansion by 
another. For this purpose we select a new expansion 
parameter X which will be considered a function of g, 
and vice versa: 

*=*(*). (3.1) 
Now 

71=0 

(3.2) 

This form is obtained if, as we assume, g can itself be 
expanded as a Taylor series in X. We somewhat 
specialize this series to be 

«=x(i+Eg«x»), (M) 

where the gn are numerical coefficients to be chosen 
presently. 

It will be advantageous to rewrite (3.2) as 

G = G 0 + G i £ X M n , (3.4) 

where the functions An are now independent of any 
arbitrary multiplicative number (or function) entering 
into the definition of G. We consider regions of the 
variables in which Gi does not vanish. Inserting (3.3) 
into (2.5), we find 

A2=G2/G1+g1, 

Az=Gz/G1+2giG2/Gi+g2, etc. 

(3.5) 

We can now enforce the rapid convergence of the new 
series (3.4) for all values of X at some chosen point s=a. 
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We only have to choose gi, g2, • • • such that 

A*(<r) = Ai(<r)=>->=0. (3.6) 
Explicitly, 

gi=-G2(<r)/G1(o-), 

g2=-G,(a)/G1(a) + 2lG2(a)/G1(a)J, etc. 

At this point it should be observed that nothing is 
known or assumed about the convergence of the series 
(3.3) for g. I t only serves the formal purpose of ob
taining the functions gn(o). 

Although (3.4) now converges at a about as well as a 
series can (it is reduced to its first two terms), we have 
no guarantee that it converges at any ST^V. We make, 
however, the working hypothesis that it does converge 
in a finite, but possibly small region S of s which in
cludes <r. (S may, of course, shrink as |X| increases.) 
If s is in S9 we now expect the function G to be ade
quately represented by (3.4), with the An being given 
by (3.5). The dependence of the series on s and a is 
worth exhibiting explicitly; for convenience we define 
the function 

G(s) = [G(s)-Go(s)2/G1(s). (3.S) 
Then 

G(s) = X(a)+\^)LG2(s)/G1(s)+g1(cr)2 

+\*(*)[Gz(s)/Gi(s)+2gl(<r) 

XGi(s)/G1(s)+g2(<r)l+---. (3.9) 

If this rearrangement is to accomplish anything, not 
all values of a are equally suitable. This may be seen 
as follows: Since the constant g is real, its variation 
truly represents a single degree of freedom. Conse
quently, there is no loss of generality in assuming that 
X is real in (3.1). Equation (3.3) then shows that the 
gn must be real. We then see from (3.7) that all the 
Gn((r)(n^ 1) must have the same complex phase. This 
only happens in certain regions (to be called constant-
phase regions) of the variable <r, if at all. For example, 
in energy-momentum space we must not consider values 
of <T corresponding to a physical scattering process, 
although subthreshold real energies are usually all 
right.5 Similarly, if partial-wave amplitudes are con
sidered, we must take a to correspond to a real energy 
lying between the left- and right-hand cuts.6 These 
remarks will be illustrated at a later stage. 

We finally observe that, in (3.9), the parameter X 
must itself be considered a function of or. Indeed, g is 
clearly independent of a. Since the gn are functions of 
a it follows from (3.3) that such is also the case for X. 

4. A SERIES INDEPENDENT OF THE 
COUPLING STRENGTH 

The second step in the procedure is to abolish, using 
continuity arguments, the privileged nature of the point 
s = a. Let us consider from now on the dependence of 

* N. N. Khuri, Phys. Rev. 107, 1148 (1957). 
6 R. G. Newton, J. Math. Phys. 1, 319 (1960). 

any function upon, say, Si (or <r{) only, keeping s2, s%, • • • 
(<?2, o"3, • • •) as fixed parameters. Dropping the sub
script 1 for convenience, we shall now speak of the single 
variable s (or a). 

We assume a to have been chosen at a point where 
the function G, defined by (3.8), is differentiable. Then, 
inside S, the derivative G (s) is also a convergent series 
in X. In particular, we can compute 

ffOrXS'MIU (4.1) 
as a convergent series from (3.9). Finally, we can elimi
nate X by the exact relation 

X-G(o-). (4.2) 
The result is 

& = &(G*/Giy+&l(Gt/G1y-2(Gi/Gd (G,/Gi)'] 
+G4{ (G,/G1y-3(G,/Gl) (GB/GI) ' 

+[5(G 2 /G 1 ) 2 -2G 3 /G 1 ] (G 2 /G 1 ) ,}+ • • • , (4.3) 

where all quantities are evaluated at the same point a 
(or s), and where we have included one more explicit 
term than in (3.9). By requiring (4.3) to hold every
where, we eliminate the need for singling out a special 
point. Thus, a first-order nonlinear differential equation 
has been obtained for the unknown function Q(s) in 
terms of the known functions Gi(s), G2(s), • • • and their 
first derivatives. This equation no longer contains any 
coupling parameter. Therefore, the latter can only be 
hidden in the constant of integration for G. The pre
sumed advantage of (4.3) over the Born series is that 
the right side has now been expressly designed for opti
mum convergence in constant-phase regions. In or near 
such regions, (4.3) is, in fact, proposed as a substitute 
for the Born series. In practice, Green functions have 
such an analytic structure,5-6 that the procedure should 
lend itself to the calculation of low-energy scattering 
and shallow bound states. 

5. SECOND-ORDER APPROXIMATION 

If all the terms of (4.3) are neglected, i.e., if the right 
side is approximated by zero, we obtain for G the first 
Born approximation, the constant of integration playing 
the role of the coupling parameter. 

The simplest nontrivial application of our procedure 
involves the first term of (4.3). To this order, 

G' = G2(G2/Gi)', (5.1) 

which may be integrated and solved for G to yield 

G=Go+[/c~G2 /G1]-1G1 , (5.2) 

where K is the constant of integration; HT1 plays the role 
of an effective coupling constant. Comparison with the 
Born series shows that K~1 —> g as g —» 0. To see in what 
sense K is a constant, suppose the derivatives in (5.1) 
are taken with respect to sx. Then K must be independent 
of Si. If the method is to be exploited to best advantage, 
the argument should be carried out simultaneously for 
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all variables sh s2, • • •. Consequently, K should be a 
true constant, in the sense that it should not depend 
upon any dynamical variable. 

The remarkable fact that (5.1) could be integrated 
without detailed knowledge of G\ and G2 does not carry 
over to higher orders of approximation. Also, to higher 
orders it may no longer be possible to treat all variables 
Si, s2, - • • on the same footing. A selection will then 
have to be made of whatever variable is of greatest 
physical interest in the problem considered. In this 
article, we do not further discuss the higher-order ap
proximations, but confine the subsequent remarks to 
the second-order form (5.2). This form depends on the 
representation chosen for G. Consider, for deflniteness, 
the scattering amplitude obtained from G by specializ
ing to the energy shell: 

pt = qZ=2fnE, (5.3) 

and assuming a spherically symmetric potential: 

G->M(A2,£) (5.4) 

(momentum representation), 

G->N(lyE) (5.5) 

(partial-wave representation). Here 

A2=(p-q)2 (5.6) 

is the momentum-transfer squared, while / is the 
angular-momentum quantum number. The unscattered 
amplitude Go in (5.2) is ignored. In the momentum 
representation, (5.2) becomes 

M(A*,E) = ZKM-M2/M1]-1M1 , (5.7) 

where Mi, M2 are the first two Born terms of M, while 
similarly, in the partial-wave representation, 

N(l,E) = £KN-N2/N12-1N1 . (5.8) 

The constants of integration KM, KJV are not a priori the 
same. As recent analyticity studies have emphasized,7 

the variable I may be treated as continuous. This moti
vates us to make KN independent of /, as well as of E. 
It is clear that, if M and N are taken from the approxi
mations above, then (setting p«q=£2 cos0) 

M9*£Pi(ca8B)N(l,E), (5.9) 
z=o 

in general, even though 

Af»=E Pi(cosO)Nn(l,E), (5.10) 
1=0 

by definition. The inequality (5.9) illustrates what is 
meant by the representation dependence of the second-
order approximation. Thus, some judgment must be 
exercised as to the representation which is adequate to 

7 T. Regge, Nuovo Cimento 14, 951 (1959). 

a given problem. It is likely, for example, that (5.8) is 
more suited to the calculation of bound states, while 
(5.7) is indicated in the study of total cross sections. 

Although this article will not go into detailed field-
theoretical applications, the following remarks can be 
made. In the Lee model,8 (5.2) is exact for N-6 scatter
ing. (There is no distinction between momentum and 
partial-wave representations here.) A similar result 
applies in simple cases of separable potentials. In more 
realistic models, it should still be noted that the 
coupling renormalization is embodied in (5.2). Consider 
the prevalent situation9 where 

G2=G2^+CGly (5.11) 

G2reg being cut-off independent, while the constant C 
diverges for infinite cutoff. It is then sufficient to make 
the difference K-C convergent; (5.2) is applicable with
out modification. 

Finally, consider a case where the analysis of Sec. 3 
breaks down: suppose Gi=0. This may happen, for 
example, in the A<£4 model (with isospin) if we consider 
the two-particle system with T= 1. Then the first Born 
term contributes nothing. By a simple adaptation of 
the preceding arguments one can easily derive, to second 
nonvanishing order, the formula 

G = G O + C K - J G 3 / G 2 ] - 2 G 2 . (5.12) 

6. APPLICATION TO THE YUKAWA POTENTIAL 

Since the foregoing considerations are heuristic 
rather than mathematically rigorous, it is essential to 
test them in practice. For this purpose we select the 
Yukawa potential model, whose Green function has 
manageable Born terms. This model bears a reasonably 
close relation, both physically and mathematically, to 
field-theoretical interactions. Furthermore, nearly exact 
solutions are already available in the literature for 
comparison. 

In the notation of Sec. 2, let 

F(r)=(4«r)-1«rMr> (6.1) 

W(p)=(p*+fx*)-K (6.2) 

The second-order formulas, (5.7) and (5.8), are the ones 
to be tested in this section. To this order, our ambition 
should not go further than to fit the case of a single 
bound state. More bound states can presumably be ac
counted for with each higher order of approximation.10 

The Coulomb limit ju—»0 in (6.1) would be an 
interesting case, but, unfortunately, it cannot be 
handled owing to the " infrared" divergences which 

8 T . D. Lee, Phys. Rev. 45, 1329 (1954). 
9 See, for example, Ref. 3, Chap. IV. 
10 This feature (that the higher the number of levels, the higher 

the order of approximation required to account for them) seems 
a basic rule of thumb in the present type of approach. This is 
another area where precise mathematical results would be 
desirable. 
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appear in the second Born approximation. We there
fore restrict ourselves to finite-range forces. For sim
plicity we then use units such that M = 1 and m=\. 

A. Momentum Representation, Eq. (5.7) 

In this representation, the constant-phase region 
consists of — o o < E < 0 for A 2 ^0 . We want to investi
gate physical scattering ( E > 0 ) . Hence, the best results 
should be obtained at small E, i.e., close to the constant-
phase region. Application of (2.6) yields for the first 
two Born terms Mi and M2 of the scattering amplitude 
the expressions given in the Appendix. We shall be 
interested in the total cross section <r. (The differential 
cross section becomes isotropic near threshold.) Using 
the optical theorem, 

a=E-1'2ImM(0,E). (6.3) 
We have 

M1(0,E)=-l, 

M 2 ( 0 , £ ) = ( 8 7 r ) - 1 ( l - 2 V ^ ) - 1 ( ^ ^ 0 ) . ^ * 

From (6.3) and (5.7), 
- 1 

a=£-i/2 i m (6.5) 
/ C M + ( 8 X ) - 1 ( 1 - 2 V ^ ) ~ 1 

or 

a = (4TT/C M
2 ) - 1 [4E+ ( 1 + I / S T T ^ ) 2 ] " 1 . (6.6) 

In particular, at threshold, 

<ro= (4™ M V(1+V^M)" 2 . (6.7) 
Eliminating KM in favor of the more physical <TO, we 
obtain 

(r==(7o{l+[l_2(47r/(ro)1/2((ro/47r)E}-1. (6.8) 

If Co is large, this should be compared with the effective-
range formula11 

,r==(ro{l+[l-2.1196(47r/(ro)1/2](c7o/47r)E}-1, (6.9) 

where the denominator is written to first order in E\ 
the coefficient of cr^E is written to first order in <r<r112. 
Comparison of (6.8) and (6.9) shows that the zero-
range limits agree exactly, while the first-order range 
correction is about twice as large in our method as in 
the effective-range method. 

We next show that our approximation is unitary at 
threshold, i.e., that an integration over angles of the 
differential cross section also yields the result (6.6) at 
zero energy. Since the amplitude is isotropic we use 

<fo/dQ= (4TT)-2 I AT(0,0) |2 (6.10) 

[a factor of (J)2 is due to m = | ] , where 

Jf (0,0) = - (KM+ 1/87T)-1; (6.11) 

Eq. (6.6) then follows. 

11 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), Chap. II . 

B. Partial-Wave Representation, Eq. (5.8) 

Here the constant-phase region is — 1<E<0. Equa
tion (5.8) will be used to determine a single 5 wave 
bound state occurring in that region as a function of a0, 
another physical quantity connected with the positive 
end of the region. We first note that the representations 
(5.7) and (5.8) for / = 0 coincide at threshold. We may 
use this as a consistency criterion to put 

KN=KM. (6.12) 

In other words, cr0 is now the same whether obtained 
from (5.7) (with or without the help of the optical 
theorem) or from (5.8). Setting 1=0, we find the binding 
energy as the value of — E for which the denominator 
of (5.8) vanishes. Thus, we must solve the equations 

KM=iV2(0,£)AM0,£) (6.13) 

and (6.7) for E= — B as a function of cr0. [The functions 
N 1,2(0,E) are given in the Appendix.] The results are 
plotted in Fig. 1 and compared with the essentially 
exact results.12 The present method does not begin to 
break down until 5 - 0 . 2 0 , i.e., fairly close to the "far 
end", 5 = 0.25, of the constant-phase region. In Fig. 1, 
the results are also compared with those of the effective-
range analysis,11 both in the zero-range limit and with 
first-order range connection. Near 5 = 0 the latter ap
proximation is 

4 7r/<ro=5-2.119653 /2+ • • • , (6.14) 

while the present method gives 

4 T T / < 7 O = 5 - (13/6)B^+ • • • , (6.15) 

FIG. 1. Relation between the zero-energy cross section <ro and 
the binding energy B in the case of a Yukawa potential^ with a 
single shallow bound state, according to various approximation 
schemes. Concerning the "exact" curve, see Ref. 11. 

12 These represent a combination of the results of J. M. Blatt 
and J. D. Jackson, Phys. Rev. 76, 18 (1949) on <rQ as a function of 
g, and of L. Hulthen and K. V. Laurikainen, Rev. Mod. Phys. 23, 
1 (1951) on B as a function of g. 
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a striking agreement to this order. In contrast, the 
agreement between (6.8) and (6.9) was not so good 
This may be due to the use of the optical theorem as a 
short cut in obtaining (6.8). Integration of da/dti 
should be considerably better, as experience with other 
methods indicates. 

7. SUMMARY 

A method has been presented for making "best" use 
of the information contained in the first few terms of the 
Born series. The region of applicability is, loosely 
speaking, the low-energy or low-binding-energy range. 
If the second Born approximation is given, then the 
method merely consists of a completely elementary 
algebraic rearrangement of the two Born terms, and is, 
therefore, equally applicable to field theory and to 
potential theory. The formula, which is of the de
nominator type made familiar through the Lee model 
and the renormalization-group treatment of the photon 
propagator, may give rise to bound states or resonances. 
It is very successful for the Yukawa potential in the 
one-level case. If higher Born terms are to be used, the 
method involves the solution of a nonlinear differential 
equation in one variable. 
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APPENDIX: SECOND BORN APPROXIMATION FOR 
YUKAWA POTENTIAL SCATTERING 

For completeness, we include the relevant formulas 
concerning the first Born terms in the case of a Yukawa 
potential [Eqs. (6.1) and (6.2)], even though some of 
them are well known. In the notation of Eqs. (5.4), 
(5.5), and (5.10), we have 

M 1 =-(A 2 +1)" 1 , (Al) 

(A2) 

M2=-{2ir)-"(d"k{l(p+ky+l~] 

The latter integral is conveniently evaluated by 
Feynman's method13 to yield 

M2= (167T)-1 f xdx[lAW-E(l-x)2+x]-1 

X [ - £ ( l - * ) H - * ] - 1 / 2 ( £ < 0 ) , (A3) 

analytic continuations being through the upper-half 
E plane in this and all subsequent formulas. This inte
gral may be evaluated in terms of elementary functions,1 

a result not used in this paper. The special case A2 = 0 
is simple to evaluate and yields (6.4). 

13 J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec
trons (Addison-Wesley Publishing Company, Inc., Cambridge, 
Massachusetts, 1955), Appendix A5. 
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FIG. 2. The function 4jrJV2(0,.E), given by (A7), 
plotted against (-E)m. 

The S-wave amplitudes are given by 

Nn(0,E)= f dzMn(2E(l-z),E). 

We find 

( 2 £ ) - 1 l n ( 4 £ + l ) ( £ > - i ) , 

iV2(0,£)= (STTE)-1 f aryaC-JSCl-aON-*]-1* 
Jo 

x+E(2x-l) 

(A4) 

(A5) 

Xln-
-E(\-xf+x 

( - 1 < £ < 0 ) . (A6) 

This integral may be evaluated in terms of the Spence 
function14 L. The result is 

jV2(0)£)=(167r)-1(-£)-3/2 

X[L(X2)+L(F2)-2L(XF)] 
( - 1 < E < 0 ) . 

where 
X = [ l + 2 ( - £ ) 1 / 2 ] - 1 , 

F = l - 2 ( - £ ) 1 / 2 , 

L(z) =-[ r^rin|i-r|. 
Jo 

(A7) 
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This result is useful in numerical work and is believed 
new. Near E=0-, N2(0,E) may be expanded as a Taylor 
series in (—E)1'2. The leading terms are 

4x,Y2(0,£)= l - 2 ( - E ) 1 / 2 + (25/6)(-E)+ • (A10) 

A plot of 47riV2(0,£) is shown in Fig. 2. 
Note added in proof. I am grateful to Dr. R. J. Eden 

for pointing out to me the interesting similarity of the 
second-order result (5.2) to a so-called Pade approxi-
mant.15 It seems unlikely, however, that this similarity 
will persist to higher orders. 

14 For simple properties and a tabulation of L(z), see K. Mitchell, 
Phil. Mag. 40, 351 (1949). 

15 G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. Math. 
Anal, and Appl. 2, 405 (1961). 


